Impact of Medication Adherence on Clinical and Economic Outcomes in Multiple Sclerosis: A Scoping Review of Real-World Evidence

Trent Bishop¹, PharmD/MBA 2028 Candidate; Aaron B. Mendelsohn², PhD, MPH; Catherine M. Lockhart, PharmD, PhD³

¹UNC Eshelman School of Pharmacy, Chapel Hill, NC, United States: ²AMCP BBCIC, Alexandria, VA, United States: ³AMCP Research Institute, Alexandria, VA, United States

Background

- Adherence to disease-modifying therapies (DMTs) is essential for improving outcomes in multiple sclerosis (MS), a chronic immune-mediated neurological condition.
- Real-world data can be used to evaluate adherence impacts on relapse rates, disability progression, and healthcare resource utilization outside of controlled clinical trials.
- Although adherence is widely recognized as important, a synthesis of its measurable real-world impact in MS has been limited.
- This scoping review summarizes the current landscape of real-world studies evaluating the association between adherence to DMTs and clinical and economic outcomes

Purpose

Methods

Articles identified from:

Embase (n = 423)

Articles screened (n = 1,505)

Articles reviewed (n = 665)

Articles included (n = 598)

Articles focused on MS and

adherence DMTs (n = 8)

Web of Science (n = 755)

Figure 1: PRISMA Diagram Detailing Identification of Articles

Identification of Articles

Articles removed before review:

Articles excluded (n = 840):

 To evaluate the impact of adherence to MS therapies on outcomes and costs using real-world data within a broader scoping review.

A scoping review of studies on

medication adherence or

persistence using real-world

claims or electronic medical

Articles were identified from

Science using the terms

compliance, adherence,

world, observational.

These MS studies reported

administrative claims, real-

Of 1,505 articles retrieved, 596

met inclusion criteria, with 8

focused on MS and adherence

associations with relapse rates,

hospitalizations, healthcare

costs, and work productivity.

PubMed, EMBASE, and Web of

records).

DMTs.

secondary data (administrative

Variable	Persistent vs Nonpersistent
 Resource category # of outpatient visits General practitioner visits Psychiatric specialist visits Other specialist visits # of hospital admissions Days in hospital # of drug prescriptions # of occupational therapy prescriptions 	4.13 (<0.001) 0.01 0.39 3.80 (<0.001) -0.02 -1.34 10.56 (<0.001) 0.85
 Cost Category, € Outpatient care Inpatient care Pharmaceuticals 	119.72 (<0.001) -532.11 54.35 (<0.001)

€187 lower at 12 months for persistent patients, driven by markedly lower inpatient costs (–€532; p <

156.90

13.91

. Despite higher outpatient and pharmacy utilization, overall healthcare costs were

-187.23 (<0.001)

Across multiple real-world datasets, adherence to DMTs in MS was consistently associated with improved clinical and economic outcomes.

Results

- Patients with high adherence, defined as a medication possession ratio (MPR) or proportion of days covered (PDC) of at least 80%, experienced 29 percent fewer relapses and a 37 percent lower risk of hospitalization compared with non-adherent patients.⁶
- High adherence was also associated with lower annual MSrelated healthcare costs, with adherent patients averaging \$3,380 per year compared with \$4,348 per year for non-adherent patients.⁶
- Persistence with specific DMTs, including fingolimod and natalizumab, was linked to sustained reductions in relapse rates and continued cost savings over time.^{2,5}
- For every 10 percent increase in adherence, patients had up to a 19 percent reduction in emergency room visits and inpatient hospital stays, as well as a 3 to 8 percent reduction in work loss and other indirect costs.⁷

	MS
tion of Articles	Но
	Oı
ticles removed before review: Duplicate articles removed (n = 433)	Sid
ticles excluded (n = 840): Abstract reviews only (n = 18) Cost or economic analyses (n=36) Duplicates (n = 136)	Pr re
Not healthcare related (n = 23) Non-human subjects (n = 4) Did not discuss medication adherence (n = 488) Focused on physiology or pharmacology (n = 23) Randomized control trials (n = 5) Reviews or commentary on other articles (n = 9) Focused only on study design or protocol (n = 36)	Re
Technology management (n = 2) Vaccine adherence (n = 13) Did not use secondary data (n = 8) Focused on predictive models (n = 3)	То
ticles excluded (n = 67): Abstract reviews only (n = 4)	Но
Cost or economic analyses (n = 9) Did not discuss medication adherence (n = 50) Reviews or commentary on other articles (n = 3) Did not use secondary data (n = 1)	Pr DI
	Pr
	Oı
	Aid
	Sid
	Table

Occupational therapy

Rehabilitation

0.001). Adapted from **Evans, C.**¹

Overall

	MS-r
	Hosi n N
	Outp n N
	Sick n N
	Pres reme N
488) = 23)	Rem n N
= 9) = 36)	MS-r
83	Tota
53	Hos
50) = 3)	Pres DMT
	Pres
	Outp
	Aids
	Sick
	Table Across

		575	N = 608		N = 370	
	High Adherence N = 352	Low Adherence N = 223	High Adherence N = 394	Low Adherence N = 214	High Adherence N = 259	Low Adherence N = 111
MS-related HRU						
Hospitalizations n (%) Mean (SD)	97 (27.6) 0.6 (1.1)	82 (36.8) 0.8 (1.3)	105 (26.7) 0.7 (1.3)	72 (33.6) 0.8 (1.4)	47 (18.2) 0.4 (1.0)	35 (32.4) 0.8 (1.5)
Outpatient visits n (%) Mean (SD)	351 (99.7) 18.5 (10.8)	220 (98.7) 20.4 (12.9)	394 (100) 19.4 (9.5)	211 (98.6) 20.8 (12.7)	259 (100) 24.9 (12.2)	111 (100) 22.2 (11.0)
Sick leave n (%) Mean (SD)	85 (24.2) 8.6 (33.0)	64 (28.7) 19.8 (70.7)	83 (21.1) 8.1 (39.0)	49 (22.9) 8.8 (34.2)	59 (22.8) 11.0 (47.6)	20 (18.0) 7.1 (31.2)
Prescriptions for aids and remedies Mobility Devices n (%)	12 (3.4)	12 (5.4)	8 (2.0)	<5 (-)	10 (3.9)	6 (5.4)
Remedies n (%) Mean (SD)	106 (30.1) 1.4 (3.0)	77 (34.5) 1.6 (3.3)	127 (32.2) 1.4 (2.8)	70 (32.7) 1.3 (3.0)	99 (38.2) 1.6 (2.7)	45 (40.5) 2.2 (4.4)
MS-related costs, mean/patient	:/year (SD) €					
Total cost	19,378 (3344)	13,063 (11,242	18,406 (3205)	11,976 (10,939)	17,411 (3466)	11,622 (9705)
Hospitalization costs	515 (1924)	1407 (3904)	422 (1675)	1051 (2613)	400 (2006)	1305 (5440)
Prescription costs (index DMT)	17,424 (2185)	5899 (3812)	16,531 (2066)	4727 (4299)	15,368 (1983)	5795 (3710)
Prescription cost (other)	201 (502)	263 (500)	217 (522)	284 (625)	296 (606)	357 (643)
Outpatient costs	802 (548)	848 (678)	754 (401)	833 (572)	855 (464)	852 (530)
Aids and remedies	242 (474)	314 (635)	288 (575)	275 (701)	325 (551)	426 (847)
Sick leave	86 (664)	619 (3686)	95 (799)	87 (870)	162 (1207)	140 (1330)

e 2. Post-index multiple sclerosis–related healthcare resource utilization and costs by adherence to index disease-modifying therapy (DMT). Across glatiramer acetate (GA), dimethyl fumarate (DMF), and teriflunomide (TER) cohorts, high adherence (MPR ≥ 80%) was associated with lower hospitalization rates, fewer inpatient days, and reduced total annual costs compared with low adherence. Highly adherent patients incurred greater prescription and outpatient costs, reflecting ongoing therapy use, but demonstrated overall lower total MS-related costs primarily due to fewer hospitalizations and shorter sick-leave durations. Adapted from **Ziemssen, T.**8

Limitations

- Observational real-world designs are subject to bias and confounding.
- Definitions of adherence and persistence varied across studies (e.g., MPR vs PDC).
- Only 8 MS-specific studies were identified, highlighting the limited amount of real-world research available in this area.
- Limited data on newer DMTs and long-term persistence outcomes.

Conclusion

- Adherence and persistence to DMTs in MS are consistently linked to improved clinical outcomes and lower healthcare and societal costs, with several studies showing statistically significant benefits.
- These findings highlight the importance of adherencefocused interventions.
- The results also provide valuable real-world evidence to guide payers, providers, and policymakers.

Acknowledgements

This study was supported by the AMCP Research Institute

References

- **Evans, C., et al.** "Adherence to Disease-Modifying Therapies for Multiple Sclerosis and Subsequent Hospitalizations." *Pharmacoepidemiology and Drug Safety*, vol. 26, 2017, pp. 702–711.
- Fox, E., et al. "Real-World Durability of Relapse Rate Reduction in Patients with Multiple Sclerosis Receiving Fingolimod for up to 3 Years: A Retrospective US Claims Database Analysis." Journal of the Neurological Sciences, vol. 398, 2019, pp. 163–170.
- Gerber, B., et al. "The Impact of Treatment Adherence on Clinical and Economic Outcomes in Multiple Sclerosis: Real-World Evidence from Alberta, Canada." Multiple Sclerosis and Related Disorders, vol. 18, 2017, pp. 218–224.
- Irwin, D. E., et al. "Differences in Multiple Sclerosis Relapse Rates Based on Patient Adherence, Average Daily Dose, and Persistence with Disease-Modifying Therapy: Observations Based on Real-World Data." Value in Health, vol. 18, 2015, p. A764.
- McQueen, R. B., et al. "Increased Relapse Activity for Multiple Sclerosis Natalizumab Users Who Become Nonpersistent: A Retrospective Study." Journal of Managed Care & Specialty Pharmacy, vol. 21, 2015, pp.
- Tan, H., et al. "Impact of Adherence to Disease-Modifying Therapies on Clinical and Economic Outcomes among Patients with Multiple Sclerosis." *Advances in Therapy*, vol. 28, 2011, pp. 51–61.
- Yermakov, S., et al. "Impact of Increasing Adherence to Disease-Modifying Therapies on Healthcare Resource Utilization and Direct Medical and Indirect Work Loss Costs for Patients with Multiple Sclerosis." Journal of Medical Economics, vol. 18, 2015, pp. 711–720.
- Ziemssen, T., et al. "Real-World Patient Characteristics, Treatment Patterns and Costs in Relapsing Multiple Sclerosis Patients Treated with Glatiramer Acetate, Dimethyl Fumarate or Teriflunomide in Germany." Neurodegenerative Disease Management, vol. 12, 2022, pp. 93–107.