Evaluating the Feasibility of Claims Databases for Emulating Interchangeability and Switching Trials: A Multi-Therapeutic **Evaluation of Originator Biologics and Biosimilars**

Patrick Pithua¹, Djeneba Audrey Djibo², Terese DeFor³, Scott Myers⁴, *Catherine M. Lockhart*¹

1. Biologics and Biosimilars Collective Intelligence Consortium, 2. CVS Healthspire Life Sciences Solutions, 3. HealthPartners Institute, 4. PearlDiver Technologies

BACKGROUND

METHODS

- There is an opportunity to utilize real-world data (RWD) to support U.S. Food and Drug Administration (FDA) approvals of biosimilars, and particularly to improve efficiency of assessment for interchangeable biosimilars, which is a unique regulatory designation in the U.S.
- For RWD to support regulatory approvals it must meet high data quality and completeness standards, ensuring the data's reliability and relevance for meeting rigorous regulatory requirements.
- Different RWD sources offer different characteristics such as data type, population size, and geographic distribution that can influence selection of the data most suited for a research question.
- It is important to understand nuances of different databases to inform and optimize study designs.

OBJECTIVE

Three databases were included in this analysis representing different settings as described in Table 1. These databases were selected to capture nuances from different data types that may inform appropriate database selection for observational research. We identified eight clinical trials examining switching between reference biologics and biosimilars from published literature and the ClinicalTrials.gov registry of protocols (Table 2). All variables representing trial inclusion/exclusion criteria, demographics, interventions, and outcomes were listed for each trial, and grouped into eight general categories: demographics, treatment, diagnostics, laboratory, vitals, behavior, assessment, and procedures (Table 3).

Databases were assessed based on characteristics such as data type and population size (Table 1) and availability of variables relevant to the trials included for evaluation. To measure the completeness and accuracy of each database we calculated the Observed-to-Expected (O/E) ratio, where the observed data represented the variables available in each database, compared to a fictitious ideal database containing all relevant variables. We also assessed other features relevant for database selection including data type, population size, and geographic distribution.

This study aimed to evaluate the feasibility of using three distinct healthcare databases to capture the inclusion/exclusion criteria and outcome measures of clinical trials intended to support interchangeability by assessing switching between originator biologics and their biosimilars.

RESULTS

Table 1. Database Characteristics

	Database A	Database B	Database C
Data Source	National commercial health plan	Regional integrated delivery network	National claims database
Database Size	>44 million individuals	>4 million individuals	>170 million individuals
Date Range	Jan 2008 – Feb 2024	Jan 2000 – Apr 2024	January 2010 - April 2023
Average Follow-Up Time	2 years	5 years	9 years
Characteristics	Administrative claims and enrollment data from a commercial health plan	Administrative claims and electronic health records from a regional health system and insurance plan	Administrative claims data from all payer types: commercial, Medicaid, Medicare,* employer, cash
Geographic Region	All 50 states and territories	Midwestern U.S.	All 50 states

DATABASE ASSESSMENT

Strengths DATARACEA

Large national health plan; Race/ethnicity for over 50% of records; Some

eference	Product	Disease
	Insulin glargine	Type 1 Diabetes Mellitus
	Adalimumab	Chronic Plaque Psoriasis
	Ranibizumab	Neovascular Age-Related Macular Degeneration
	Infliximab	Rheumatoid Arthritis
	Ustekinumab	Moderate to Severe Plaque Psoriasis
	Rituximab	Rheumatoid Arthritis
	Adalimumab	Chronic Plaque Psoriasis
	Bevacizumab	Metastatic Colorectal Cancer

DISCUSSION

- Each database exhibited different characteristics that may influence database selection. For example:
- Database A includes race/ethnicity data for over

50% of individuals, but incomplete laboratory data.

Database B includes linkage to electronic medical

records with robust laboratory and clinical data, but

the population size is small and limited

Database C includes an extremely large population

that is geographically diverse with over 9 years of

average follow-up, but only includes information

All databases captured complete data on procedures and

treatment identified using common coding systems

including the International Classification of Diseases – 9th

and 10th Revisions (ICD-9; ICD-10) or Healthcare Common

All databases included most demographic information

such as age and sex, but some lacked race/ethnicity or

other social determinants of health measures. Figure 1.

Procedure Coding System (HCPCS). Figure 1.

Commercial		laboratory and disease assessment data available (e.g., HbA1c); Relatively large population size; Possible EHR linkage	
Health Plan	Limitations	Incomplete laboratory data; Incomplete or unavailable behavioral data (e.g., smoking status) and limited patient-reported data	
DATABASE B Integrated	Strengths	Detailed clinical data as expected from an integrated delivery network, especially in laboratory and other disease measures (e.g., best corrected visual acuity, DAS28 and other patient reported outcomes)	
Network	Limitations	Small population limited to the Midwestern U.S. region	•
DATABASE C	Strengths	Extremely large population from all 50 states with long follow-up time due to the ability to track patients between different health plans or insurance types	
Database	Limitations	No medical record linkage so limited to data from billing claims; no laboratory data or other disease measures	•
Figure 1. Percent of Var	riables Captured	Across Categories (O/E Ratio)	
		laple 3. Irial variable Catedo	ories

8

Variable Category	Example Variables
Demographics	Age; Sex; Race and Ethnicity; Geographic Region
Diagnostics	Any disease diagnosis or condition
Procedures	Clinically administered medications; surgery; medically attended events
Treatment	Drug therapy – current or historical use
Laboratory	HbA1c, C-reactive protein, absolute neutrophil count; neutralizing antibody positivity
Vital Signs	Weight; Body Mass Index (BMI); QT Interval measurement
Behavior	Smoking status; birth control methods; pregnancy/lactation; adherence; duration of response
Assessment	Quality of life; ECOG status; best corrected visual acuity

geographically.

found in billing claims.

A B C

REFERENCES

5. https://clinicaltrials.gov/ct2/show/NCT04761627?term=interchangeability&draw=3&rank=12 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065063/ 6. https://clinicaltrials.gov/ct2/show/NCT01759030?term=interchangeability&draw=6&rank=45 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464749/ 7. https://clinicaltrials.gov/ct2/show/NCT05637515?term=interchangeability&draw=2&rank=3 3. https://www.aaojournal.org/article/S0161-6420(21)00325-0/fulltext 8. https://clinicaltrials.gov/ct2/show/NCT05378867?term=interchangeability&draw=2&rank=4 4. https://clinicaltrials.gov/ct2/show/NCT02990806?term=interchangeability&draw=6&rank=47

CONCLUSION

The choice of a database should align with specific research needs, considering each database's strengths limitations. While claims data offer valuable real-world insight, understanding data accuracy, and completeness, and traceability is crucial for advancing its use for regulatory purposes.

ACKNOWLEDGEMENTS

This project is fully supported by a cooperative agreement (Award #1U01FD007757) with the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS). The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement by, FDA/HHS or the U.S. Government.

Presented at ISPOR Europe 2024, November 17-24, 2024, Barcelona, Spain