

[S5] The State of U.S. Biosimilar Utilization and Post-Marketing Surveillance Initiatives to Support Treatment and Coverage Decisions

Catherine M. Lockhart, MS, PharmD, PhD
Biologics and Biosimilars Collective Intelligence Consortium
October 24, 2018

DISCLAIMER

All Faculty in this education session have obtained the appropriate permission to use copyright materials. Sources for all images are provided in citations.

PRE-TEST

LQ1: Which of the following were barriers to generic drug adoption and utilization in the United States?

- a. An unexpected side effect of the Hatch-Waxman Act that facilitated "pay-to-delay" arrangements
- b. A 1988-1989 investigation resulted in convictions of FDA officials, manufacturers, and consultants for bribery
- c. Patients and prescribers were uncomfortable with generic drugs
- d. All of the above

LQ2: Which of the following is a LIMITATION of clinical trial data?

- a. Designed to reduce confounding and bias
- b. Potentially excludes large segments of the population who may be treated with the drug in real-world practice
- c. Provides evidence that assesses safety and efficacy of the drug to support regulatory requirements
- d. All of the above

LQ3: Data produced from research by organizations such as the Biologics and Biosimilars Collective Intelligence Consortium could be used to inform treatment and coverage decisions.

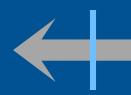
- a. True
- b. False

LQ4: There are multiple organizations conducting post-marketing surveillance specifically on biosimilars and their reference biologics in the United States

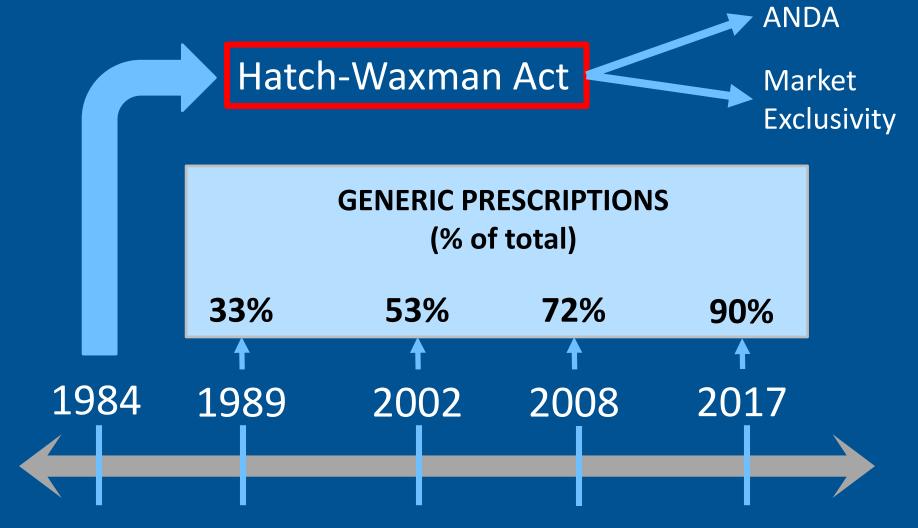
- a. True
- b. False

Outline

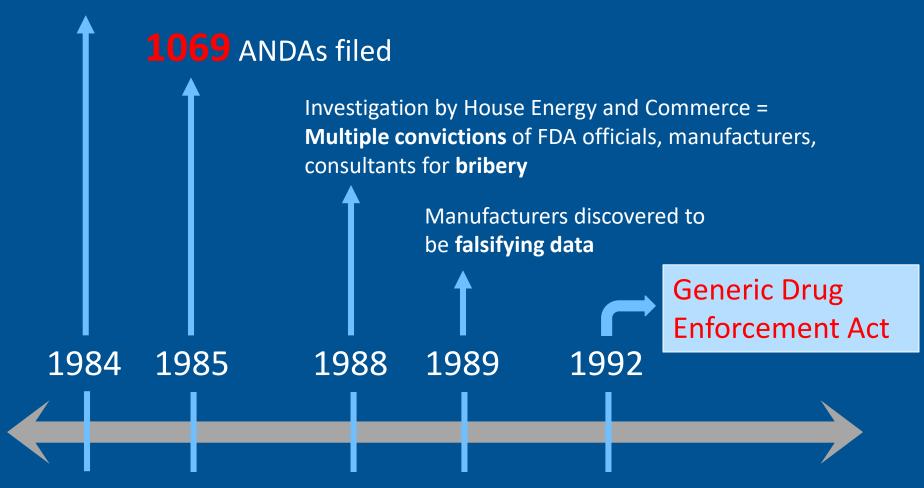
- □ It All Started With Generics
- □ Biosimilars: Definition and Regulatory Landscape
- □ Biosimilars: U.S. Market Access and Utilization
- □ Biosimilars: Data Sources for Decision-makers
- □ BBCIC: One Approach to Real-World Evidence Generation
- Sources of Post-Marketing Data
- □ Sources of Post-Marketing Data for BIOSIMILAR Research


It All Started With Generics

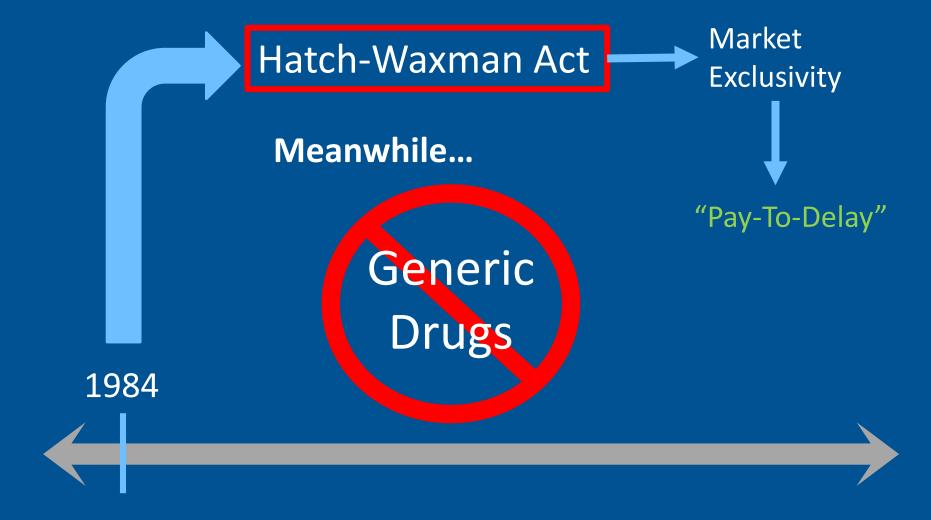
History of Generic Drugs in the U.S.


1984

History of Generic Drugs in the U.S.



Adverse Events



Adverse Events

Economic Impact of Generics in the U.S.

Prescription drug spending attributed to generics

\$1.6 trillion Savings to U.S. healthcare system in the past decade

\$265 billion Savings to the U.S. healthcare system in 2017 alone

Biosimilars: Definition and Regulatory Landscape

Types of Drugs: Chemical vs Biologic

Chemical Drugs

- Well-defined composition
- Simple structure
- Small size
- Minimal or no heterogeneity
- Typically have more than one pharmacological target

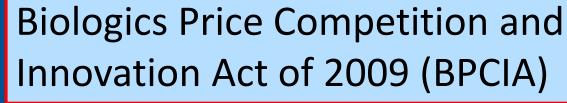
Biologic Drugs

- Composition defined to a certain extent
- Complex structure
- Big size
- Significant (micro) heterogeneity
- Often highly specific

Definitions

Biosimilar or Biosimilarity

"the biological product is <u>highly similar</u> to the reference product notwithstanding minor differences in clinically inactive components" and "there are <u>no clinically</u> <u>meaningful differences</u> between the biological product and the reference product in terms of the safety, purity, and potency of the product" [PHS Act Section 351(i)(2)]


Reference Product

"the single biological product licensed under subsection (a) against which a biological product is evaluated in an application submitted under subsection (k)" [PHS Act Section 351(i)(4)]

Biosimilars in the U.S.

abbreviated licensure pathway for biological products shown to be biosimilar to or interchangeable with an FDA-licensed reference product

2010

351(k) Application

Requirements for FDA Registration

Compared to Reference Product:

Biosimilar*

Mechanism of action

Label Indications

Dosage form/Route/Strength

Manufacturing

Requirements for FDA Registration

Demonstrating Biosimilarity → **TOTALITY of EVIDENCE**

Analytical

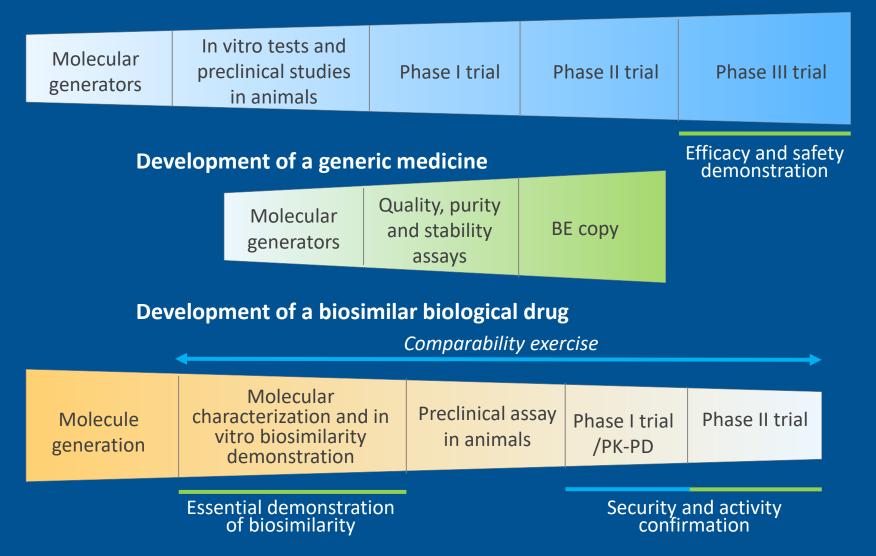
Demonstrate the product is "highly similar" to the reference product

Non-Clinical

Toxicity

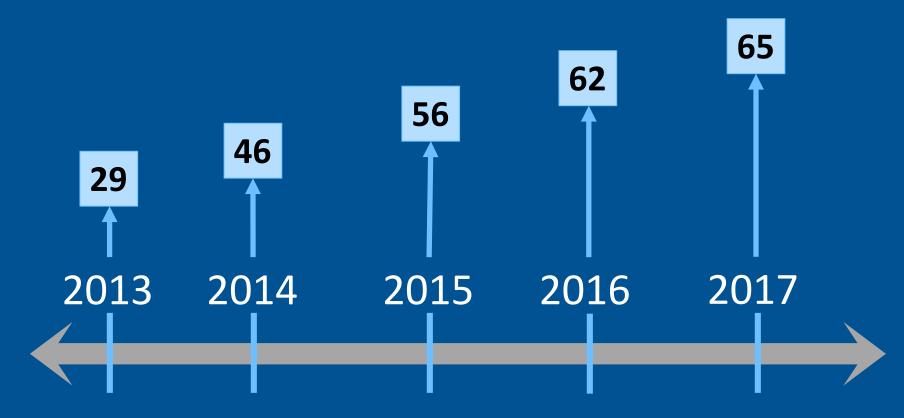
Clinical Pharmacology

Clinical study to assess immunogenicity and PK/PD showing safety/purity/potency in at least 1 relevant indication


Additional Clinical Studies

If necessary

Development of Original, Generic and Biosimilar Medicines


Development of a novel drug (chemical or biological)

Biosimilars in Development in the U.S.

Biosimilars Approved in US – as of September 2018

filgrastim-sndz (Zarxio®)

insulin glargine (Basaglar®)*

infliximab-abda (Renflexis®)

insulin glargine (Lusduna[™])*

adalimumab-abdm (Cyltezo™)

bevacizumab-awwb (Mvasi™)

trastuzumab-dkst (Ogivri™)

insulin lispro (Admelog®)*

infliximab-qbtx (lxifi™)

2015

2016

2017

2018

infliximab-dyyb (Inflectra®)

etanercept-szzs (Erelzi™)

adalimumab-atto (Amjevita™)

epoetin alfa-epbx (Retacrit™)

pegfilgrastim-jmdb (Fulphila®)

filgrastim-aafi (Nivestym™)

*FDA approval as a follow-on biologic

Biosimilars Approved by EMA – as of September, 2018

Year of EMA Approval	Biosimilar Product	Reference Product	Number of Products
2006	Somatropin	Norditropin®	2
2007	Epoetin alfa	Epogen®	3
2007	Epoetin zeta	Retacrit®	2
2008/2009/2010/2013/2014	Filgrastim	Neupogen®	9
2013/2014	Follitropin alfa	Gonal-f®	2
2013/2016/2018	Infliximab	Remicade®	4
2014/2017/2018	Insulin glargine	Lantus®	3
2016	Enoxaparin sodium	Lovenox®	2
2016/2017	Etanercept	Enbrel®	2
2017/2018	Adalimumab	Humira®	8
2017	Insulin lispro	Humalog [®]	1
2017	Rituximab	Rituxan®	6
2017	Teriparatide	Forteo®	2
2017/2018	Trastuzumab	Herceptin®	4
2018	Bevacizumab	Avastin®	1
2018	Pegfilgrastim	Neulasta®	2

TOTAL APPROVALS

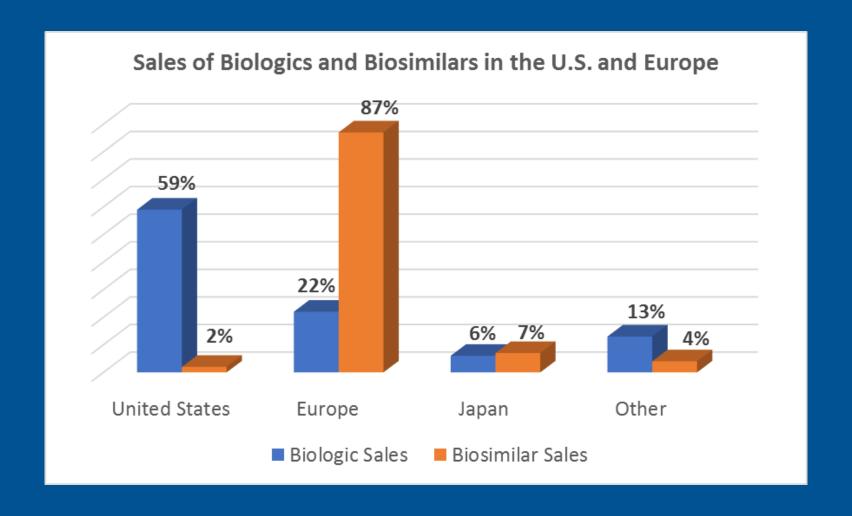
= 53*

*3 were withdrawn in 2011, 2012, and 2016

Biosimilars: U.S. Market Access and Utilization

Current Utilization Patterns in the U.S.

2017

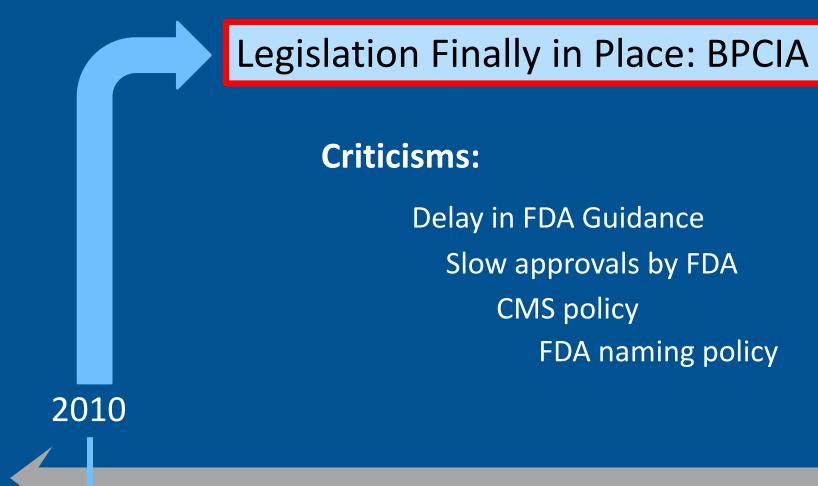

filgrastim-sndz (Zarxio®) 22% of filgrastim sales

infliximab-dyyb (Inflectra®) 1.6% of

1.6% of infilximab sales

Biosimilar Sales

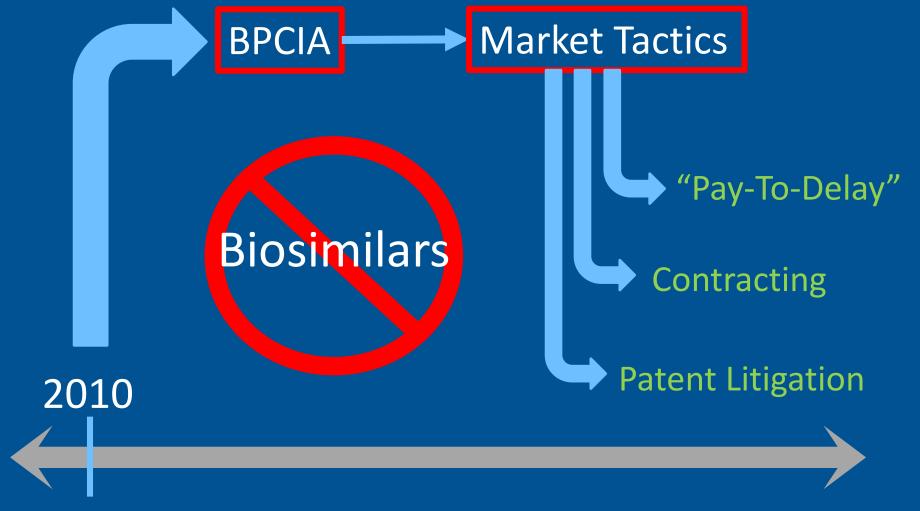
- 1. Regulatory
- 2. Business Decisions
- 3. Uncertainty



- 1. Regulatory
- 2. Business Decisions
- 3. Uncertainty

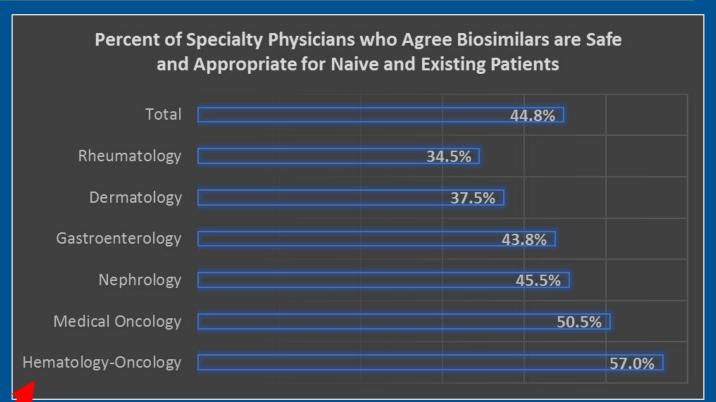
FDA Biosimilars Action Plan (BAP)

- 1. Improving the efficiency of the biosimilar and interchangeable product development and approval process;
- 2. Maximizing scientific and regulatory clarity for the biosimilar product development community;
- 3. Developing effective communications to improve understanding of biosimilars among patients, clinicians, and payers; and
- 4. Supporting market competition by reducing gaming of FDA requirements or other attempts to unfairly delay competition.



- 1. Regulatory
- 2. Business Decisions
- 3. Uncertainty

- 1. Regulatory
- 2. Business Decisions
- 3. Uncertainty



Uncertainty - Prescribers

Adapted from: Cohen et al. **Awareness, Knowledge, and Perceptions of Biosimilars Among Specialty Physicians**. *Adv Ther* 2017;12(2):2160-2172.

- 1,201 US physicians in specialties that are high biologics prescribers
- 75% trust the FDA approval decisions, but...
- When asked if they believe biosimilars are safe and appropriate for naïve and existing patients....

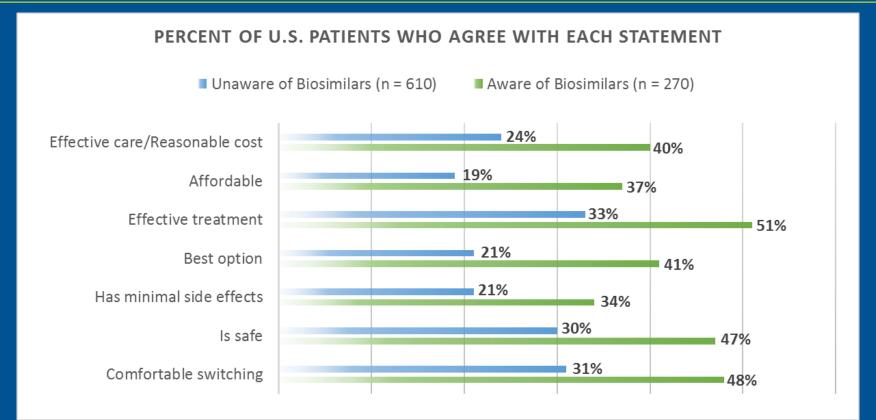
Uncertainty - Patients

Jacobs et al. Patient attitudes and understanding about biosimilars: an international cross-sectional survey.

Patient Preference and Adherence 2016;10:937-948.

	Biologics			Biosimilars		
	Basic awareness	No knowledge	Currently use	Basic awareness	No knowledge	Currently use
Patient (n=635)	30%	33%	18%	9%	54%	2%
Patient advocate (n=245)	47%	10%	29%	20%	31%	9%
General public (n=250)	11%	57%	N/A	6%	70%	N/A

- Basic awareness = Defined as reporting at least a general impression of biologics or knew the term "biologic" or "biosimilars".
- N = 3,198 patients with inflammatory diseases or cancer that could be treated with available biosimilars
- 38.8% from US.



Factors Influencing U.S. Biosimilar Utilization

Uncertainty - Patients

Adapted from: Jacobs et al. **Patient attitudes and understanding about biosimilars: an international cross-sectional survey**. *Patient Preference and Adherence* 2016;10:937-948.

• Basic awareness = Defined as reporting at least a general impression of biologics or knew the term "biologic" or "biosimilars".

Factors Influencing U.S. Biosimilar Utilization

Medical Specialists' Attitudes to Prescribing Biosimilars Pharmacoepidemiol Drug Saf 2017;26(5):570-577.

Subjective Complaints as the Main Reason for Biosimilar Discontinuation After Open-Label Transition from Reference Infliximab to Biosimilar Infliximab

Arthritis Rheumatol 2018;70(1):60-68.

Barsell et al. A Survey Assessment of US Dermatologists' Perception of Biosimilars

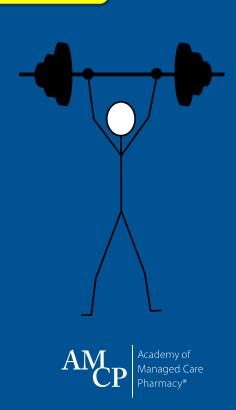
J Drugs Dermatol 2017;16(6):6122-615.

....and others

Post-approval studies evaluating comparative safety and effectiveness will be critical to generating real-world evidence to inform clinical practices and policy decisions

OPPORTUNITY FOR EDUCATION

Biosimilars: Data Sources for Decision-Makers


Data Source - Clinical Trials

Strengths:

Randomized Controlled Trials (RCTs) = GOLD STANDARD

Carefully designed to reduce:

BIAS
CONFOUNDING
PLACEBO EFFECT

Data Source - Clinical Trials

Limitations:

May not be sufficient to address all relevant questions

Exclude potentially large segments of the population

Cover a limited length of time, often very short

Do not often reflect normal clinical settings

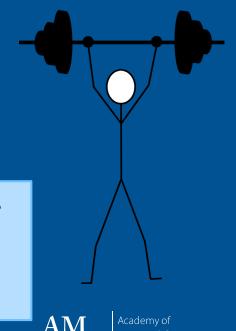
Very Expensive

Origins in the Gap in Evidence

Real-world utilization quickly outpaces available clinical evidence

Real world evidence development initiatives are focused on expanding evidence effectively, rapidly and cost Real World Utilization effectively (e.g., FDA EvGen, PCORI, NIH Collaboratory) Gaps Ħ. 6-7 years & \$0.8B-\$1.2B on a few thousand patients Evidence **CONSEQUENCE** • Great variation between study cohorts and real-world population • Resistance from payers to reimburse for new therapies Hesitation of physician to prescribe therapy Undetermined real-world effectiveness of treatments Evidence Phase 1 Phase 3 Phase 2 Phase 4 100-500 patients with 1000-5000 patients with Post-marketing research 20-100 healthy target condition target condition and monitoring volunteers

Data Sources – Real World Evidence (RWE)



RWE and Regulatory Use21st Century Cures requires FDA to establish a program to evaluate potential use of RWE for approval of new indications or to satisfy post-approval study requirements, <u>label expansion</u> or revision, and benefit/risk profiles

"The FDA uses RWE for regulatory decisions, albeit primarily related to safety. Nevertheless, for some drugs, the demonstration of efficacy has been based on RWE from case series or registries." – Jarrow et al.

"Multiple converging sub-studies from the same populations, or independent studies combining multiple data sources, could bring real-world data closer to 'causality' and could be perceived as acceptable alternatives to randomized trials." - Greenfield

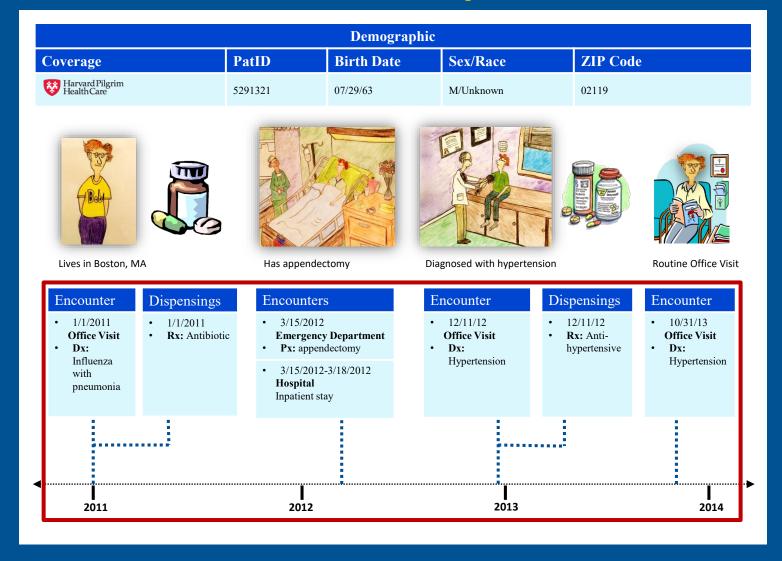
"...on average, there is little evidence for significant effect estimate differences between observational studies and RCTs, regardless of specific observational study design, heterogeneity, or inclusion of studies of pharmacological interventions." – Anglemyer et al.

Strength of Secondary Data

Commonly Used Data Sources

Administrative Claims

Electronic Medical Records


Patient interaction with the U.S. healthcare system generates data

Why is data collected?

- Payment/billing
- Document clinical care
- Physician decision support
- Recordkeeping
- Registries
- Data provide rich source of information for patient safety evaluations

Bob's Story

Bob is a 47-50 year old male with 1,035 days of observed time

ISPOR/ISPE Task Force on RWE - Recommendations

- Define study (questions and purpose)
 - Exploratory
 - Hypothesis evaluating treatment effectiveness (HETE)
- □ Public posting of study protocol and analysis plan
- □ Publish study results (or post on website)
- ☐ Enable replication (same data and analyses)
- □ Confirm important findings (2nd data source & population)
- □ Publicly address methodologic criticism after publication
- □ Include key stakeholders in design, conduct & dissemination

Real World Evidence

Limitations:

Data is usually collected for reasons **OTHER THAN** research, **NOT RANDOMIZED**

Longitudinal: Requires consistent care in one healthcare delivery system and/or insurance plan

Clinical outcomes: may not be readily identified

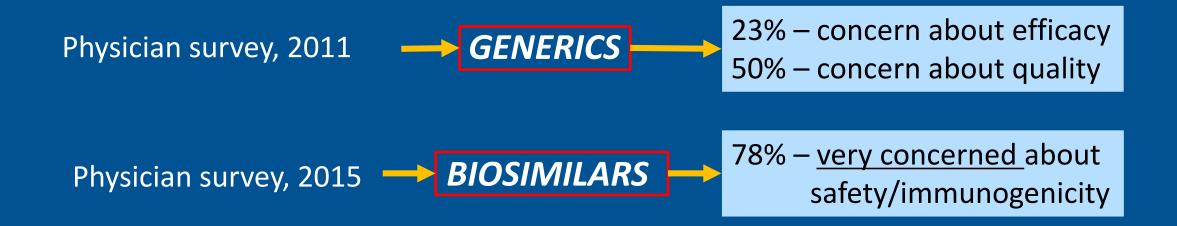
Market uptake: influences research capability

Coding: Non-specific codes or errors

BBCIC: One Approach to Real-World Evidence Generation

BBCIC - Background

A non-profit, multi-stakeholder, scientific public service initiative conducting rigorous post-marketing observational research to monitor biosimilar products and novel biologics for effectiveness and safety



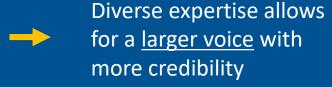
BBCIC Purpose: Why the BBCIC Is Needed

Generics saved the US well over \$1.6 trillion in past decade but it took 20 years.

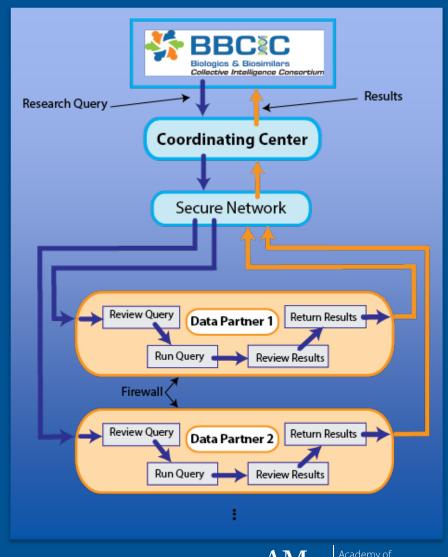
- -Generics are safe and effective, resulting in increased patient access to critical medications.
- —Slow generic uptake influenced by anecdotal reports that got wide press coverage.
- -Lingering uncertainty among physicians and patients about safety and comparability.

BBCIC Surveillance – Leveraging Sentinel Capabilities

The AMCP BBCIC strategy provides a unique opportunity for Managed Care to support public knowledge of biologic and biosimilar drugs with robust science.

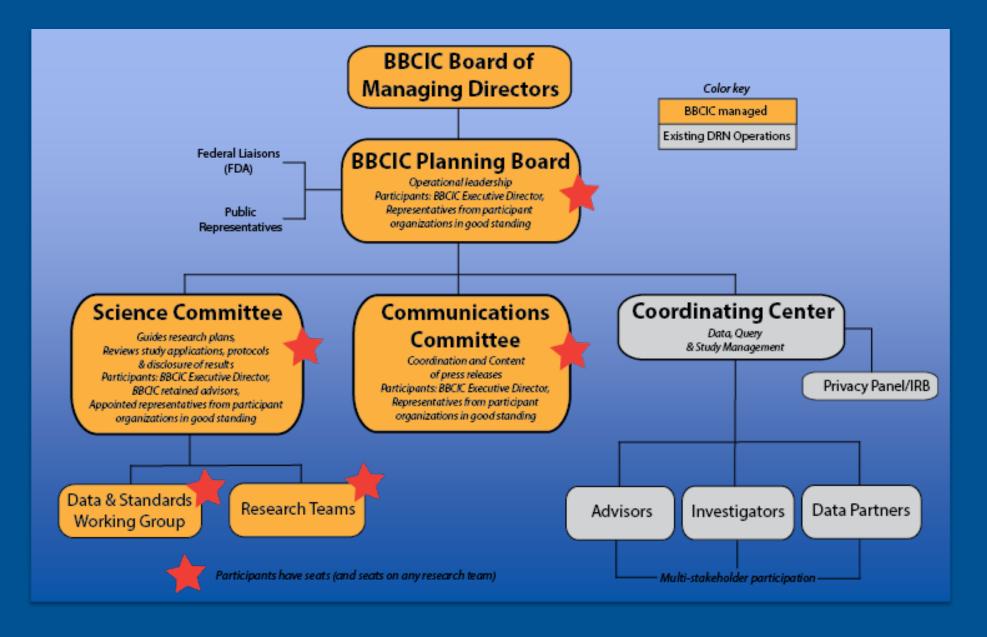

BBCIC leverages the Sentinel Initiative

Improves the efficiency and cost-effectiveness of post-marketed observational studies.


BBCIC actively monitors biosimilars and innovators

BBCIC is a multistakeholder collaboration

A forum for collaboration between managed care organizations, integrated delivery networks, PBMs, pharma companies and research institutions


BBCIC Governance Overview

- The BBCIC Charter outlines <u>transparent organized process</u> for conducting research.
 There are no surprises.
- CER protocols, designed by KOLs and following ISPOR-ISPE guidelines, must explicitly
 pre-specify the epidemiologic, statistical and clinical thresholds required to identify a
 safety-related finding.
- 18 founding participants including Managed Care Organizations, Integrated Delivery Networks, PBMs & Harvard-Pilgrim Health Care Institute
- Public representatives on Planning Board: ASCO, American College of Rheumatology,
 National Health Council

BBCIC Governance Overview

AbbVie Aetna Amgen Anthem **Apobiologix Boehringer Express Scripts KP** Washington **Harvard Pilgrim HealthPartners** HOPA **Henry Ford** Merck Momenta **Optum** Pfizer Sandoz Sanofi

BBCIC Partner Organizations

Coordinating Center

HealthCore

Anthem

HOPA

Hematology/Oncology Pharmacy Association Health Care Systems Research Network

HealthPartners, Henry Ford Health System

Data and scientific partners

Kaiser Permanente Washington Health Research Institute Harvard Pilgrim
Health Care

Aetna

Express Scripts

Optum

Convened by

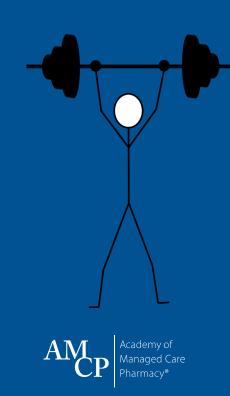
BBCIC Scientific Operations

Disease and Biologic
Products
(Research Teams)

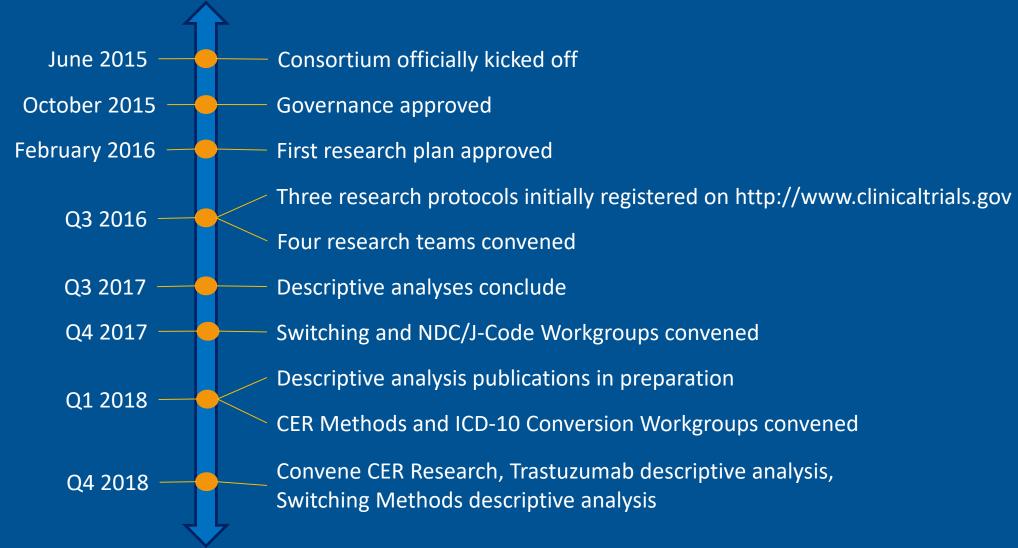
Data & Infrastructure
Study Design & Analytic
Methods
(Work Groups)

Descriptive Studies

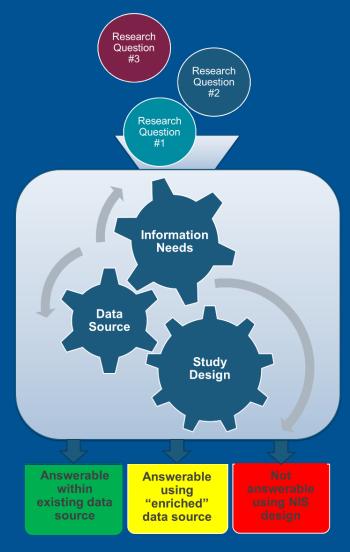
Hypothesis-driven
Comparative Safety and
Effectiveness Studies


Data Availability & Characterization

Study Design & Methods


Strengths of BBCIC

- □ Stakeholders play an active and extensive role
- □ Focus on biologic class and diseases for new biosimilars
- **□** Descriptive analysis
 - To understand patients, disease, treatments, outcomes
 - To understand data, methods, gaps, possible solutions
- □ Comparative analysis
 - Both safety and effectiveness
 - All biosimilars for originator biologic
- **□** Active surveillance
- □ Leverage Sentinel


BBCIC Progress to Date

BBCIC 2017-2019: Lines of inquiry

- Data fitness / infrastructure
 - Data availability and characterization
 - Capture of NDC information on medical claims
 - Impact of transition from ICD-9 to ICD-10, claims-based algorithms
- Descriptive studies
- Study design and methods
 - Switching study design and analytic approaches
 - Comparative safety/effectiveness study design and analytic approaches
- Protocol-Driven Comparative Safety/Effectiveness Studies

BBCIC - Progress

- What we have DONE
- What we are DOING
- What we PLAN to DO

BBCIC - Progress

- What we have DONE
- What we are DOING
- What we PLAN to DO

Descriptive Analysis Research Teams

In 2016, the BBCIC Science Committee convened 4 research teams to conduct descriptive analyses using the BBCIC DRN

Project	Disease Indications	Drugs
Insulins	• Diabetes	Insulin
Colony Stimulating Factors (G-CSF)	Febrile Neutropenia risk reduction in non-myeloid malignancies treated with myelosuppressive anti-cancer drugs associated with febrile neutropenia	Filgrastim (Neupogen), PEG-filgrastim (Neulasta), TBO-filgrastim, filgrastim-sndz (Zarxio)
Anti-Inflammatories	 Rheumatoid Arthritis Psoriasis Psoriatic Arthritis Ankylosing Spondylitis Ulcerative Colitis Crohn's Disease 	Adalimumab (Humira), infliximab (Remicade),infliximab-dyyb (Inflectra), infliximab-abda (Renflexis), rituximab (Rituxan), tocilizumab (Actemra), abatacept (Orencia), etanercept (Enbrel), certolizumab (Cimzia), golimumab (Simponi), ustekinumab (Stelara), secukinumab (Cosentyx), natalizumab (Tysabri), golimumab (Simponi)
Erythropoeitin- Stimulating Agents (ESA)	Anemia (CKD, Hemodialysis)	Epoetin alfa (Epogen, Procrit) darbepoetin alfa (Aranesp), methoxy polyethylene glycol-epoetin beta (Mircera)

Descriptive Analysis Research Teams

In 2016, the BBCIC Science Committee convened 4 research teams to conduct descriptive analyses using the BBCIC DRN

Project	Objective	Outcomes
Insulins	Describe treatment patterns and outcomes of adult patients with diabetes who use long-acting (LAI) or intermediate-acting (NPH) insulin	(1) major cardiac events, combined; severe hypoglycemic events; (2) A1C baseline and follow-up
Colony Stimulating Factors (G-CSF)	Descriptive analysis G-CSF use in breast or lung cancer patients who received chemotherapy with Grade III or IV neutropenic-risk.	(1) rate of hospitalizations; (2) severe neutropenia; anaphylaxis; combined measure of bone pain, glomerulonephritis, capillary leak syndrome, hyperleukocytosis and splenic rupture.
Anti-Inflammatories	Describe treatment patterns and outcomes of patients with autoimmune diseases receiving biologic treatments	Serious infections requiring hospitalization.
Erythropoeitin- Stimulating Agents (ESA)	Assess the feasibility of currently available BBCIC data to conduct a study of ESA biosimilars and innovators in hemodialysis (HD) patients.	Chronicity of HD among patients; similarity of population of HD patients described by USRDS

- Outcome rates were consistent with other clinical and observational studies.
- With the BBCIC DRN we are able to **reliably identify and characterize** exposures, outcomes, and potential confounders for the disease cohorts of interest.

Descriptive Analysis – Lessons Learned

OVERALL:

- The BBCIC DRN is robust and reliable for large-scale observational studies
- Additional methods and data sources are being incorporated to enrich the data and capabilities of the BBCIC

Project	Challenges	Lessons Learned/Solutions
Insulins	Design Considerations	 Coding algorithms for diagnosis inconsistency Careful attention to episode gap length Alternative methods for patient adherence
G-CSF	ExposuresOutcomes	 Broader inclusion criteria Careful attention to covariates and clinical outcome measures
Anti-Inflammatory	• Outcomes	 Clinical effectiveness measures are difficult to identify from administrative claims Pilot to link PRO and clinical measures to claims Include linked EMR + claims data sources
ESA	Data Sources	Data sources with adequate patient numbers

BBCIC - Progress

- What we have DONE
- What we are DOING
- What we PLAN to DO

Lessons Learned - Infrastructure Improvements

Data Improvements

- Address multiple gaps identified in descriptive analyses
- Pilots with Patient Reported Outcomes from MTM or Specialty Pharmacy providers
- Pilots with mobile health patient reported outcomes tied longitudinally to the Common Data Model

Add Data Partners

- Cancer Research Network
- Medicare ESRD Full data set
- Anthem HealthCore Integrated Research Environment (HIRE)
- ASCO CancerLinQ

Expand Common Data Model

Outcomes measures

Workgroups

In 2017, the BBCIC Science Committee convened 4 workgroups to develop best practices in research methodology and a platform for future studies

Project	Challenges Addressed	Study Goal
Switching	Design Considerations	Treatment of switching/sequencing as a covariate/confounder in BBCIC CER studies
CER Methods	Design Considerations	Develop best-practices based on current methodology for conducting observational comparative-effectiveness research
NDC / J-Code	ExposuresOutcomes	Investigate the extent to which NDCs are being supplied on physician-office claims
ICD-10 Mapping	ExposuresOutcomes	In preparation for future descriptive and CER projects, ICD-9 codes are being mapped to ICD-10 codes to allow utilization of data both before and after October 2015.

BBCIC - Progress

- What we have DONE
- What we are DOING
- What we PLAN to DO

Upcoming BBCIC Research - 2019

COMPARATIVE EFFECTIVENESS

G-CSF

First BBCIC CER study to compare the G-CSF originator biologic to available biosimilars in the US. The Research Team is expected to kickoff in Q4 of 2018 and research will commence in earnest by the end of the year.

Insulins

The topic of a PCORI grant application.

DESCRIPTIVE ANALYSIS

Trastuzumab Descriptive Analysis

We anticipate research will commence research in Q1 2019.

METHODS

Switching Methods Descriptive Analysis

The next phase of the Switching Methods Workgroup. This study will include an in-depth discussion of best practices for study design, and a descriptive analysis to test study designs in the BBCIC DRN.

BBCIC Future Directions

Expanded Research Scope

- Priority research in current and emerging **BIOSIMILARS**
- We are the **BIOLOGICS** and Biosimilars Collective Intelligence Consortium
- Opportunities for drug class or disease level research

Expanded Partnerships

- Pursuing partnerships to leverage resources for specific projects
- Seeking new participating members (manufacturers, managed care, PBMs, research organizations, data partners)

Expanded Data Capabilities

- Adding new data sources to enrich the BBCIC DRN
- Exploring inclusion of patient-reported and clinical data with administrative claims

Expanded Communications Plan

- PUBLICATIONS!!
- Increased public exposure to research programs and results

Anticipated Publications in 2019

■ Methods and Infrastructure

- CER Methods Systematic Review
- CER Methods Best-Practices and Recommendations
- ICD-9 to ICD-10 Mapping
- NDC/J-Code Patterns and Implications in Physician Claims
- Switching Patterns Descriptive Analysis

□ Observational Research

- Descriptive Analyses: Insulins, Anti-Inflammatories, G-CSF, ESA
- G-CSF: Design of a CER Study
- G-CSF: Preliminary Results
- Trastuzumab: Design of a Descriptive Analysis
- Trastuzumab: Preliminary Results

Practical Application of BBCIC Research

WHAT WE PROVIDE:

REAL-WORLD EVIDENCE

Fill **evidence gap** with large-scale, multi-stakeholder, post-marketing assessment of biosimilars and reference biologics

EDUCATION

Source of **education** for stakeholders

WHAT WE NEED:

ENGAGEMENT

Health Plans

Pharmacy Benefit Managers

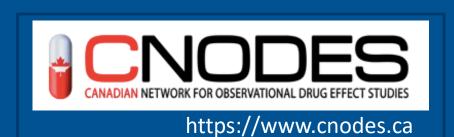
Patients

Prescribers and Healthcare Practitioners

Manufacturers

Sources of Post-Marketing Data

Rapidly Evolving Landscape



https://fda.gov

Sources of Post-Marketing Data for BIOSIMILAR Research

Post-Marketing Research - BIOSIMILARS

To date the only multi-stakeholder, multi-source research consortium dedicated to proactive surveillance of safety and effectiveness of biosimilar products and reference biologics in the United States

POST-TEST

LQ1: Which of the following were barriers to generic drug adoption and utilization in the United States?

- a. An unexpected side effect of the Hatch-Waxman Act that facilitated "pay-to-delay" arrangements
- b. A 1988-1989 investigation resulted in convictions of FDA officials, manufacturers, and consultants for bribery
- c. Patients and prescribers were uncomfortable with generic drugs
- d. All of the above

LQ1: Which of the following were barriers to generic drug adoption and utilization in the United States?

- a. An unexpected side effect of the Hatch-Waxman Act that facilitated "pay-to-delay" arrangements
- b. A 1988-1989 investigation resulted in convictions of FDA officials, manufacturers, and consultants for bribery
- c. Patients and prescribers were uncomfortable with generic drugs
- d. All of the above

LQ2: Which of the following is a LIMITATION of clinical trial data?

- a. Designed to reduce confounding and bias
- b. Potentially excludes large segments of the population who may be treated with the drug in real-world practice
- c. Provides evidence that assesses safety and efficacy of the drug to support regulatory requirements
- d. All of the above

LQ2: Which of the following is a LIMITATION of clinical trial data?

- a. Designed to reduce confounding and bias
- b. Potentially excludes large segments of the population who may be treated with the drug in real-world practice
- c. Provides evidence that assesses safety and efficacy of the drug to support regulatory requirements
- d. All of the above

LQ3: Data produced from research by organizations such as the Biologics and Biosimilars Collective Intelligence Consortium could be used to inform treatment and coverage decisions.

- a. True
- b. False

LQ3: Data produced from research by organizations such as the Biologics and Biosimilars Collective Intelligence Consortium could be used to inform treatment and coverage decisions.

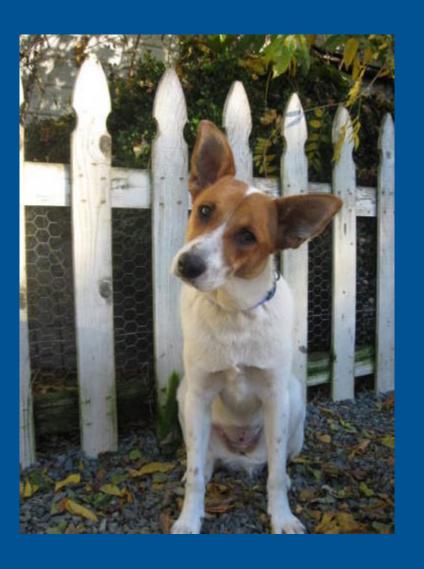
- a. True
- b. False

LQ4: There are multiple organizations conducting post-marketing surveillance specifically on biosimilars and their reference biologics in the United States

- a. True
- b. False

LQ4: There are multiple organizations conducting post-marketing surveillance specifically on biosimilars and their reference biologics in the United States

- a. True
- b. False



QUESTIONS?

Cate Lockhart, MS, PharmD, PhD

Program Director, BBCIC clockhart@bbcic.org

Office: 703-684-2646

